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Abstract

This paper addresses the problem of three-dimensional
(3D) human mesh estimation in complex poses and oc-
cluded situations. Although many improvements have
been made in 3D human mesh estimation using the two-
dimensional (2D) pose with occlusion between humans,
occlusion from complex poses and other objects remains
a consistent problem. Therefore, we propose the novel
Skinned Multi-Person Linear (SMPL) Edge Feature Dis-
tillation (SEFD) that demonstrates robustness to complex
poses and occlusions, without increasing the number of pa-
rameters compared to the baseline model. The model gen-
erates an SMPL overlapping edge similar to the ground
truth that contains target person boundary and occlusion
information, performing subsequent feature distillation in
a simple edge map. We also perform experiments on var-
ious benchmarks and exhibit fidelity both qualitatively and
quantitatively. Extensive experiments prove that our method
outperforms the state-of-the-art method by 2.8% in MPJPE
and 1.9% in MPVPE on a benchmark 3DPW dataset in the
presence of domain gap. Also, our method is superior in
3DPW-OCC, 3DPW-PC, RH-Dataset, OCHuman, Crowd-
Pose, and LSP dataset in which occlusion, complex pose,
and domain gap exist.

1. Introduction
Human mesh estimation, which has been used recently

in various applications such as digital human and action
recognition, targets to generate a 3D mesh by estimating
3D semantic human joints and human mesh vertex locations
from 2D input images. However, directly estimating 3D
mesh information from input 2D images poses a significant
challenge due to the ambiguity in estimating body part ex-
act locations. Especially in complex pose cases (e.g., yoga,
crouching, twist) or those where occlusion between humans
occur, the performance deteriorates. To address these prob-
lems, recent studies [1, 2] employ additional information
predicted by 2D pose detectors. Specifically, Choi et al.
[1] illustrated the problem of global average pooling and

utilized 2D pose information that includes the target per-
son in the feature map as a resolution. Khirodkar et al.
[2] proposed the center map, modularized in the encoder,
as well as two losses specifically, the interpenetration loss
and depth ordering loss to solve the occlusion between hu-
mans. These studies have improved 3D mesh estimation ac-
curacy by incorporating the prior 2D pose knowledge, but
they still struggle with occlusions and complex poses in the
wild datasets containing a large domain gap.

First, a problem with the baseline 3D mesh (3DCrowd-
Net [1]) in that it cannot be properly extracted as in Figs. 1
(a) and (b). The 2D pose for each image is estimated prop-
erly, but the 3D mesh estimate is inaccurate. Therefore, ad-
ditional structural information is essential to estimate com-
plex poses. Second, if an object is occluded by other people
or objects, the 3D mesh estimation accuracy decreases. In
Figs. 1 (c) and (d), the baseline model cannot estimate an
appropriate mesh due to severe occlusion, necessitating ad-
ditional guidance on occlusion.

This paper proposes a novel methodology, SMPL Edge
Feature Distillation (SEFD) which can solve occlusion and
complex poses as limitations of 3D pose estimation. To
this end, Fig. 2 displays a novel SMPL overlapping edge
serving as a ground-truth (GT) edge map. To exploit this
SMPL overlapping edge under real-world conditions where
GT does not exist, we utilize another edge extracted by the
simple edge detector. Thereafter, feature distillation pro-
duces a simple edge map to reduce the difference between
the edges extracted by the simple edge detector and the
SMPL overlapping edges. Conventional knowledge distil-
lation methods for human poses aim to lighten student mod-
els [3, 4, 5, 6, 7]. Our feature distillation aims to distill the
ground-truth feature representations of the teacher model to
the student model solving the real-environment condition
without ground-truth. We propose a new approach robust
to occlusion and complex poses while account for struc-
tural information in 3D mesh estimation. Our contribution
is summarized as follows:

• We designed the SMPL overlapping edge generation,
which contains occlusion information while being ro-
bust to complex poses. The superiority of the proposed
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Figure 1. Qualitative comparison of the baseline [1] and the proposed feature distillation SMPL overlapping edge. (a) and (b) show complex
poses and (c) and (d) shows occluded situations.

method persists through several experiments. We pro-
vide the preconfigured occlusion & complex pose an-
notation and codes to support SMPL overlapping edge
generation.

• To efficiently utilize the SMPL overlapping edge un-
der real-world conditions where GT does not exist, we
propose a novel method, SMPL edge feature distilla-
tion (SEFD), where simple edge map is distilled to re-
duce the difference between the simple edge and the
SMPL overlapping edge.

• Extensive studies demonstrate that the proposed
method is the most effective for complex poses and oc-
clusion on various public datasets outperforming pre-
vious state-of-the-arts methods.

2. Related Works
3D Human Mesh Recovery Estimation. 3D Human Mesh
Estimation is the field of estimating mesh directly or using
the pose, shape, and trans parameters, which are parame-
ters described in [8]. In human mesh estimation, top-down
approaches appear in [9, 10, 11, 12, 2, 13, 14, 15, 16, 1,
17, 18, 19, 20, 21, 22, 23, 24] and bottom-up approaches in
[25, 26, 27]. The top-down approach is a method of estimat-
ing a single person’s mesh in a bounding box. When used as
an input for the model, the person’s bounding box is char-
acterized robustly by the similarity of human scale. Alter-
natively, the bottom-up approach changes to a certain size
when the image is used as an input. Therefore, an originally
high-resolution image changes into a low-resolution image
and affects the person‘s scale. This poses a challenge for
human mesh estimation of a small-scale person. Accord-
ingly, most recent state-of-the-art algorithms are top-down
approaches. However, human mesh estimation is not per-
formed appropriately in the case of overlapping people in
the top-down approach.
Occlusion-aware mesh estimation Various methods, such
as [28, 29, 2, 27, 23, 1, 25, 26], have emerged to solve
the occlusion concern, and each idea is logically convinc-
ing and yields favorable results. Specifically, [28] used

occlusion-robust pose-maps (ORPM) to make it possible
to infer full-body poses from partial occlusions. However,
proximity of multiple points of the same type results in in-
accuracy. Furthermore, [29] proposed an occlusion-robust
method, but a disadvantage emerges when the neck is cov-
ered; identifying people becomes difficult and the model
suffers in occlusions situations such as hugs between peo-
ple. Conversely, [2] solved the occlusion by creating a mod-
ule that can provide global and local information through
the Context Normalization (CoNorm) for Human Center
heatmap. However, there is a problem of relying on the
Human Center map. And, the problem of relying on the 2D
pose detection model can result in inaccurate human cen-
ter maps. Similarly, [27, 23] solves occlusions by creating
occlusion annotations, but the annotations were made from
[30] and [31]. Therefore, occlusion was not solved with
certainty because of their inaccuracy. Additionally, [1] of-
fers 2d pose guidance, but does not solve occlusions with
objects and people. Whereas [25, 26] estimates the mesh
by estimating the human center map and mesh parameter
maps. Also, [26] includes an additional relative depth to
make it occlusion-aware. These methods yield promising
results with occlusions, but may not be properly estimated
if occlusions are present in the human heatmap. Unlike
[1], SEFD is robust to occlusion because it uses the SMPL
Edge Map, which explicitly informs occlusions of objects
and people. Additionally, complex poses can be solved by
using the edge map‘s structural features to help distinguish
a person’s poses.
Edge detection. Edge detection represents one of the most
fundamental tasks in the field of computer vision and im-
age processing. In early stages, hand-crafted edge detec-
tion methods such as the Canny edge detector [32] and
Sobel filtering [33] have been used. With the advent of
deep learning-based methods, model-based edge detection
techniques have been studied. This includes [34], which
used hierarchical Convolutional Neural Networks (CNNs)
to utilize semantic and fine features to carry out edge de-
tection, and [35], which developed a multi-scale CNN ar-
chitecture to learn rich hierarchical representations in the
edge and object boundary detection. Similarly, [36] pro-
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posed a lightweight edge detection model that utilizes tra-
ditional edge detection operators into CNNs. Edge detec-
tion has been utilized as guidance in many vision tasks
[37, 38, 39, 40, 41, 42, 43].
Knowledge distillation. Knowledge distillation provides a
technique to transfer general knowledge extracted from a
source teacher model to a target student model [44]. Simple
yet effective for model compression, response-based knowl-
edge refers to imitating the neural response of the teacher
model’s final output [44, 45, 3, 46]. Taking advantage of its
ability to extract essential features of deep neural networks
with increasing abstraction, feature based knowledge distil-
lation utilizes intermediate layers, i.e., feature representa-
tions, to supervise the student model [47, 48, 49, 50, 51].
Recently, many knowledge distillation methods have been
applied widely in different fields of computer vision tasks
[52, 53, 54, 55, 56]. We utilized feature-based knowledge
distillation not to lighten but to supply guidance to the stu-
dent model, to ensure it follows the teacher model’s fea-
tures. We provide a detailed description in the following
section.

3. Proposed Method
Fig. 2 exhibits the proposed method’s overall architec-

ture, SMPL edge feature distillation (SEFD). The SMPL
overlapping edge includes the structural information close
to the ground-truth expressing the occlusion. It is generated
by the SMPL edge map generator, concatenated with the in-
put image for the teacher model training. We use the trained
teacher model’s encoder to teach the student model through
the proposed feature distillation. The detailed operation in-
cludes the following elements.

3.1. SMPL Edge Map Generator

This section explains the detailed process of the SMPL
edge map generator with the occlusion description from Fig.
2 (a). The SMPL edge map generator sets the world coordi-
nates independently and projects each of them to different
image planes. Thereafter, each image experiences edge de-
tection and adaptive dilation to create an SMPL overlapping
edge, Ioverlap edge, which is the SMPL edge with occlusion
description.
Mesh-to-image projection. This section refers to the
mesh-to-image projection in Fig. 2 (a) onto the SMPL
edge map generator. Firstly, SMPL [8] obtains a total of
6,890 3D body meshes

−→
B through the SMPL model us-

ing 23 real-valued 3D poses
−→
θ representing human poses

and 10 real-valued shapes
−→
β , involving human shape infor-

mation;
−→
θ ∈ R23×3,

−→
β ∈ R10, and

−→
B ∈ R6890×3. To

perform image projection, camera intrinsic parameters are
required. Those parameters include, the focal length, the
distance from the camera to the image plane, {fx, fy}, and

the principal point, the center coordinate of the image plane,
{cx, cy}. Define the original image as IO ∈ RH×W×3. If
IO includes N people of SMPL parameters, each parameter
is defined as ΘN = {

−→
β ,

−→
θ ,

−−−−→
TSMPL} and each focal length

and principal point that corresponds to the person is called
FN = {fxN , fyN} and CN = {cxN , cyN} respectively.
However, the image projection may perform improperly in
the following two cases.

First, when an extrinsic camera parameter
−→
R ∈ R3×3

and
−→
T ∈ R3×1 are not set to each scene’s camera parame-

ter, the image projection fails (
−→
R is the angle of the camera

view and
−→
T is the camera translation parameter).

Second, if the camera intrinsic parameter is changed de-
pending on each person, the image projection also fails. For
an example displayed in Fig. 3 (b), when several people are
image-projected naively using pseudo ground-truth SMPL
parameters in MSCOCO [57], problems occur because FN

and CN differ for each person in a single image. Therefore,
we solved the problem such that all people presented in the
image possess the same focal length and principal point (the
detailed process appears in the supplementary materials).

Finally, the image projection is performed using the ex-
perimentally determined FN and CN . Through this, an ac-
curate pseudo ground-truth SMPL map displays in Fig. 3
(c). Projecting single ΘN , FN , and CN is called a single
SMPL map IN , and it is defined as below:

IN = Proj(ΘN , FN , CN ), (1)

where Proj means projection to an image plane.
Edge detection. This section refers to edge detection in
the SMPL edge map generator in Fig. 2 (a) to pass IN
to the edge detector. For robust, 3D, human mesh recov-
ery in complex poses, the structural information including
the occlusion description is necessary. Thus, we use the
edge map, a widely-used structural maps, by utilizing sim-
ple edge detection such as that employed in [32], [35], and
[36]. If we perform the edge detection naively, we obtain
a noisy edge as it extracts unwanted texture information
from the background, as well as outlines or object bound-
aries. However, we require an edge map that retains only
human boundary information for 3D human mesh estima-
tion (and avoids noisy edges). Hence, we distinguish these
noisy edges from those where only human boundary infor-
mation remains.

The results from the edge detection phase yield, an edge
map from the SMPL parameter IedgeN which is extracted for
each people N . It can be expressed in the following equa-
tion:

IedgeN = Edge(IN ), (2)

where Edge represents the simple edge detector. In our case,
a Canny edge detector [32] was adopted.

3
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Figure 2. Visualization of the proposed SMPL edge feature distillation (SEFD). Overall processes of (a) the proposed SMPL edge map
generator and (b) the proposed feature distillation.

Figure 3. A failure case using MSCOCO [57] benchmark pseudo
ground-truth. (a) an input image, (b) a falsely projected image, and
(c) an image using the proposed method to solve the focal length
and principal point problems.

Adaptive dilation. This section demonstrates the adaptive
dilation phase in the SMPL edge map generator of Fig. 2
(a). This phase performs dilation to IedgeN , the output from
the edge detection phase. The role of the dilation involves
highlighting the human boundary information over the gen-
eral edges. The results from the dilation phase can be ex-
pressed in the following equation:

Idilated edge
N = Edgen×n(IN ), (3)

where Edgen×n means performing the dilation using a ker-
nel with n× n pixels after the edge detector.

We propose the effective adaptive dilation over conven-
tional dilation methods. Adaptive dilation is a method of
effectively changing the kernel size according to an object’s
size. Fig. 4 (c) is an edge map generated from the edge
detection phase on the small object, and Fig. 4 (d) is ac-
quired following naive n × n dilation with n = 5. While
the person’s structural information is preserved in Fig. 4
(c), the structural information is crushed in Fig. 4 (d), and

Sarea Dilation kernel size
1× 1 ∼ 16× 16 pixels 1× 1
16× 16 ∼ 64× 64 pixels 3× 3
64× 64 ∼ 128× 128 pixels 5× 5

128× 128 ∼ 256× 256 pixels 7× 7
256× 256 ∼ 512× 512 pixels 9× 9

Table 1. Various adaptive dilation kernel sizes according to the
bounding box region of a person Sarea.

Figure 4. Results of performing Canny edge detection [32] and
dilation for a small object. (a) Input image, (b) SMPL map, results
extracted by Canny edge detections [32] (c) without dilation, (d)
with 5× 5 dilation, and (e) with 9× 9 dilation.

the person’s shape becomes unrecognizable in Fig. 4 (e).
Correspondingly, to save a small object’s boundary infor-
mation, we employ a bounding box histogram to identify
the histogram distribution and propose adaptive dilation that
maximizes human structural information. Adaptive kernel
size for dilation appears in Table 1 using a bounding box
area Sarea (the detailed explanation is described in the sup-
plementary materials).

Using the proposed adaptive dilation as shown in Fig. 5,
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Figure 5. Results for adaptive dilation depending on the size of
the object. (a) Input image, (b) SMPL overlapping edge (adaptive
dilation), (c) zoomed in red box from (b), (d) SMPL overlapping
edge (5×5 dilation), and (e) zoomed in blue box from (d).

by applying minimal dilation to a small object and extensive
dilation to a large object, it is possible to create detailed
internal structural information while preserving the target
person‘s boundary information.
Overlapping dilated SMPL edge maps. This section
refers to the overlapping phase in Fig. 2 (a). All dilated
SMPL edge maps Idilated edge

N are added and saturated to
make the SMPL overlapping edge Ioverlap edge. The equa-
tion is as follows.

Ioverlap edge =

N∑
i=1

Idilated edge
i . (4)

Visualization of Ioverlap edge exhibits in the last phase of
Fig. 2. This edge offers the advantage of being able to con-
vey information clearly on the edge map’s occlusion. Com-
pared with various structural maps, the proposed SMPL
overlapping edge Ioverlap edge achieved superior perfor-
mance improvement, and therefore, we defined it as the final
teacher model (verified in the experimental section).

3.2. Feature Distillation

The proposed architecture appears in Fig. 2. We adopt
feature distillation to mimic the teacher model’s output from
the simple student model input. IO, and Ioverlap edge are
concatenated and imported into the teacher model as done
previously. The student model is fed a new edge map, con-
catenation of IO and Isimple edge, where Isimple edge is
the naive edge detector’s output. In other words, the stu-
dent model starts with a simple edge from simple edge de-
tector Isimple edge to mimic the SMPL overlapping edge
Ioverlap edge, the teacher model’s output. This is de-
signed to reduce the structural gap between Isimple and
Ioverlap edge, given a severe difference and that direct es-
timation of Ioverlap edge proves impossible.

Utilizing the general losses used in feature distillation
[51, 44, 58, 59], losses are applied such that the teacher en-
coder features could be distilled adequately to the student
encoder. The loss configuration is as follows:

L1(Log(σ(Feat3,4Teacher))− Log(σ(Feat3,4Student))), (5)

where L1 is the L1 calculation, Log the logarithmic func-
tion, and σ the Softmax function. Feat3,4 refers to the third

and fourth layers in which the feature size decreases in the
encoder. The reason for this setting is that each feature map
offers a different capacity that can contain the structural in-
formation difference, and various feature map combinations
are included, though difficult to learn due to a large spatial
information difference. The feature map connection with
the best performance is used (it will be explained in the ex-
periments section).

4. Experiments

We present the experimental results to demonstrate the
proposed 2D pose and 3D mesh estimation method’s effec-
tiveness with common datasets [28, 60, 61, 25, 26, 62, 63,
64, 65] by comparing them with other state-of-the-art 3D
mesh estimation methods. We analyze the structural maps
results to utilize the SMPL edge fully, and prove the pro-
posed method’s superiority by thoroughly performing abla-
tion studies on the losses, optimal feature layers for feature
distillation, and various edge maps.

4.1. Datasets

Training Datasets. We used Human3.6M [66], MuCo-
3DHP [28], MSCOCO [57], and MPII [67] as training
datasets, according to the standard split protocols defined
in [66, 28, 57, 67].
Test Datasets. The 3DPW [60] dataset, commonly used as
a test dataset, was compared and classified into conditions
with and without domain gaps. Our experiment, did not
use 3DPW dataset for training. Occlusion-related datasets
3DPW-OCC [61, 60], 3DPW-PC [60, 25], RH-Dataset
(RH-D) [26], OCHuman [62], and CrowdPose [63] and
complex pose related datasets, LSP [64, 65] and OCHMR
[2], Liu et al [27], VisDB [23] , CLIFF [24], 3DCrowd-
Net [1] are compared. Also, the results of MuPoTs [28] are
compared in the supplementary materials.
Evaluation Metrics. For performance evaluation, we em-
ployed mean per-joint position error (MPJPE), procrustes-
aligned mean per-joint position error (PA-MPJPE), mean
per-vertex point position error (MPVPE), the mean per-
centage of correct key points (mPCK0.6

h ), as well as AP ,
AP 50, and AP 75, which are standard metrics using Object
Keypoint Similarity (OKS) [57].

4.2. Effectiveness of Structural Map

SMPL edge map without occlusion description. To ad-
dress the validity of the proposed Ioverlap edge on occluded
scenes, we address the SMPL edge without an occlusion de-
scription Idilated edge

∀ . It follows a similar procedure to the
SMPL edge map generator, only without overlapping each
dilated edge, since all people in an image are already con-
sidered. This becomes the equation below:
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Method MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)
No Structure Baseline 81.7 51.5 98.3

Canny edge [32] 80.05 49.45 95.86
Canny edge 3× 3 [32] 79.87 49.86 95.22
Canny edge 5× 5 [32] 79.16 49.88 94.84
Canny edge 7× 7 [32] 80.06 49.38 95.52
Canny edge 9× 9 [32] 80.45 49.72 95.90

HED [35] 79.53 49.91 95.09
HED 3× 3 [35] 80.03 50.12 96.26
HED 5× 5 [35] 80.84 50.35 96.60

RCF [34] 79.78 49.94 95.67

Simple
Edge

Detecter

PiDiNet [36] 79.78 49.88 95.76
EPS RTV [68] 79.94 50.06 95.11

Instance
Segmentation Mask2former [69] 79.43 49.80 95.13

Idilated edge
∀ 70.07 46.04 84.24SMPL edge

(Ground Truth) Ioverlap edge 64.75 43.79 78.36

Table 2. Evaluation on preprocessing methods using several struc-
tural information.

Figure 6. Results for various structural maps. (a) Input im-
age, results by (b) Canny edge [32] 5×5 dilation, (c) HED
[35], (d) PiDiNet [36], (e) RCF [34], (f) RTV method [68], (g)
Mask2Former [69], (h) Idilated edge

∀ , and (i) Ioverlap edge.

I∀ = Proj(
N∑
i=1

(Θi), FN , CN ), (6)

where I∀ is the output of projection from all people in an
image. In the same way as the Ioverlap edge production de-
scribed above, I∀’s Edge detection and dilation are carried
out

Iedge∀ = Edge(I∀), (7)

Idilated edge
∀ = Edge5×5(I∀). (8)

While Ioverlap edge considers both occlusions between a
person and an object and those overlapping between people,
Idilated edge
∀ only accounts for occlusions between a person

and an object, as displayed in Figs. 6 (h) and (i). For con-
venience, we define Canny edge [32] as the output of the
Canny edge detector [32], and the SMPL edge calls both the
SMPL overlapping edge Ioverlap edge and the SMPL edge
map without an occlusion description Idilated edge

∀ .
Performance comparison for various structural map
generations. Table 2 conveys the structure map results for

MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)
only inference 98.29 62.30 115.99

SMPL edge estimator 81.19 50.67 96.98
feature distillation 77.37 49.39 92.6

Table 3. Performance comparison of three approaches to effi-
ciently use the SMPL overlapping edge Ioverlap edge.

the simple edge detector [32, 35, 34, 36], edge preserving
image smoothing [68], instance segmentation [69], and pro-
posed SMPL edge (Ioverlap edge and Idilated edge

∀ ).
Except for the SMPL edge, the 3D mesh and pose

estimation accuracy provided optimal performance when
Canny edge [32] with 5 × 5 dilation was used, as shown
in Fig. 6 (b). This 5 × 5 dilation improved the perfor-
mance by highlighting the human boundary information.
However, if the dilation size expanded too significantly, the
accuracy decreased. Accordingly, it was confirmed that the
accuracy decreases as detailed structural information disap-
pears after applying over a certain dilation size. This occurs
because edge detectors [35, 36, 34] fail to detect detailed
edges when the background color matches that of a person,
leading to failure in extracting human body structural in-
formation. Meanwhile, the Canny edge [32] detection im-
proved performance by emphasizing a boundary through di-
lation because it detects almost all edges even with a back-
ground and person color similarity. [68] preserved the im-
ages’s edge components and smoothed non-edge. Thus, it
preserved the whole image’s structural information, but did
not emphasize the person’s structural information, yielding
even poorer performance than other structural maps. For
instance segmentation, the state-of-the-art method [70] was
adopted. As captured in Fig. 6 (g), occlusion information
could not be predicted, and detailed body part information
was unknown. Therefore, even considering the structural
information, the performance improvement was not signif-
icant (the superiority and visualization of the Canny edge
[32] also appears in the supplementary material).

Finally, the performance improved greatly when the
SMPL edge map was applied. Also, the performance
greatly increased by clearly providing the specific structural
and target person’s boundary information. Ioverlap edge

provided the greatest performance improvement by addi-
tionally considering the occlusion information.
Performance comparison for various approaches using
Ioverlap edge. We confirmed that performance improved when
the SMPL overlapping edge Ioverlap edge is used, though
it could not be applied in the real environment as it was
created using ground-truth. Therefore, we devised sev-
eral novel approaches to apply the Ioverlap edge. The first
method was to input the canny edge [32] map directly into
the trained model using the Ioverlap edge. The second in-
volved estimating the SMPL edge map directly using the
image generator model [71], and the last method was to per-
form feature distillation. As available in Table 3, the first
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Figure 7. Visualization comparison with state-of-the-arts methods on benchmark datasets. (a) Input image, (b) visualization of 2D pose,
(c) I2L-MeshNet [12], (d) SPIN [10], (e) 3DCrowdNet [1] (baseline), and (f) the proposed SEFD.

method exhibited extremely poor performance. This results
because the boundary information for a target person and
occlusion contained in the Canny edge [32] presented a re-
markable difference from that of the Ioverlap edge.

The second approach of directly estimating Ioverlap edge

using the U-Net structure [71] yielded little improvement
in performance, and was not satisfactory when it came to
complex poses or occlusions. In these situations, the SMPL
edge map could not be estimated properly, which led to
failure in human mesh estimation (detailed analysis will be
available in the supplementary materials).

Therefore, we used the feature distillation method to
consider the complex poses and occlusion situation. Unnec-
essary Canny edge [32] boundary information was removed
through Ioverlap edge, and occlusion information was dis-
tilled through feature distillation from pseudo ground-truth
SMPL edges.

4.3. Comparisons with State-of-the-Arts Methods

Fig. 7 exhibits the comparison with state-of-the-art
methods [12], [11], and [1] against the proposed method.
Overall, as I2L-MeshNet [12] and SPIN [10] did not con-
sider complex poses or occlusions between people or ob-
jects, their performance was not satisfactory. Therefore,
the proposed method was compared only with the baseline
3DCrowdNet [1].

Not using 3DPW training Dataset using 3DPW training Dataset
Method MPJPE(↓) PA-MPJPE(↓) MPVPE(↓) Method MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)

HMR [9] 130 76.7 -
GraphCMR [10] - 70.2 - TCMR [72] 86.5 52.7 102.9

SPIN [11] 96.9 59.2 116.4 I2L-MeshNet [12] 84.5 51.1 98.2
I2L-MeshNet [12] 93.2 57.7 110.1 VIBE [73] 82.0 51.9 99.1

Liu et al [27] 93.1 - - MAED [74] 79.1 45.7 92.6
ROMP [25] 91.3 54.9 108.3 BEV [26] 78.5 46.9 92.3
OCHMR [2] 89.7 58.3 107.1 METRO [19] 77.1 47.9 88.2

Pose2Mesh [13] 89.5 56.3 105.3 ROMP [25] 76.7 47.3 93.4
MAED [74] 88.8 50.7 104.5 HybrIK [20] 76.2 45.1 89.1

Song et al [14] - 55.9 - PARE (H) [16] 74.5 46.5 88.6
Fang et al.[75] 85.1 54.8 - Mesh Graphormer [21] 74.7 45.6 87.7

Tuch [15] 84.9 55.5 - PyMAF-X (R) [18] 76.8 46.8 88.7
PARE [16] 82.0 50.9 97.9 PyMAF-X (H) [18] 74.2 45.3 87.0

3DCrowdNet (R) [1] 81.7 51.5 98.3 D&D [22] 73.7 42.7 88.6
TCFormer * [17] 80.6 49.3 - VisDB [23] 72.1 44.1 83.5

PyMAF-X (R) [18] 79.7 49.0 94.4 CLIFF (R) [24] 72.0 45.7 85.3
SEFD (R) (Ours) 77.4 49.4 92.6 CLIFF (H) [24] 69.0 43.0 81.2

Table 4. Results of using and not using the 3DPW training data set.
It can seen how robust the proposed method is to the domain gap
when 3DPW training data is used. “R” stands for Resnet backbone
and “H” stands for HRNet backbone. “*” stands for pseudo 3DPW
training dataset.

Fig. 7’s top row displays an example of occlusion. In
the baseline case, the three 2D poses were estimated to a
certain level, but the person at the back was not completely
restored. Our method provides robustness in this occlusion
case and restores the occluded person. The performance of
3D mesh estimation is influenced greatly by the 2D pose
estimator’s output demonstrating the limitation when an es-
timator fails to generate a proper 2D pose in the second row
of Fig. 7. We solved this problem by considering addition-
ally structural information through SMPL edge feature dis-
tillation. The third row reveals an improvement in complex
poses accuracy. In such complex poses, the 2D pose was
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Occlusion Complex
3DPW-OCC [61, 60] 3DPW-PC [60, 25] RH-D [26] OCHuman [62] CrowdPose [63] LSP [64, 65]Method

MPJPE(↓) PA-MPJPE(↓) MPVPE(↓) MPJPE(↓) PA-MPJPE(↓) MPVPE(↓) PCK0.6
h (↑) AP(↑) AP50(↑) AP75(↑) AP(↑) AP50(↑) AP75(↑) PCK0.6

h (↑)
OCHMR [2] - - - 117.5 77.1 149.6 - 24.8 60.7 28.6 21.4 48.3 16.5 -
Liu et al [27] 94.4 - - - - - - - - - - - - -
VisDB [23] 87.3 56.0 110.5 - - - - - - - - - - -

CLIFF (R) [24] Openpose [76] - - - - - - 0.7690 17.7 38.5 14.9 19.9 37.9 18.0 0.8247
CLIFF (R) [24] YOLOX [77] - - - - - - 0.7613 23.2 49.8 20.4 27.4 51.5 25.9 0.8407

3DCrowdNet (R) [1] 88.61 56.79 103.22 88.77 57.26 105.68 0.8019 39.7 68.8 41.0 25.2 44.9 24.9 0.8186
SEFD (R) 83.48 55.0 97.12 85.92 54.94 100.50 0.8259 44.1 71.7 47.2 29.0 48.8 30.0 0.8315

Table 5. This table shows comparisons with Baseline, methods for solving occlusions, and comparisons with SOTA methods in using
3DPW [60] dataaset. “R” means for using Resnet [78] backbone. The openpose [76] and YOLOX [77] next to CLIFF are detector models.

Loss MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)
L1 79.15 49.78 94.80

FSP [59] 79.10 50.11 95.12
KD [44] 78.68 49.85 94.22
GC [51] 78.51 49.71 94.50
AT [58] 78.85 49.52 94.46

Log-Softmax-L1 78.26 49.85 94.22

Table 6. Results on utilizing various losses for feature distillation.

properly extracted to restore the human mesh to a plausible
degree, but the hand position was not formed accurately.
However, our proposed method formed the hand position
adhering to the input.

We are comparing 3DPW as well as the occlusion and
complex pose datasets with other models in Tables 4 and 5.
From Table 4, our method outperforms other methods when
a domain gap exists. Table 5 conveys that our proposed
method outperforms OCHMR [2], Liu et al. [27], VisDB
[23], and 3DCrowdNet [1], which are specialized methods
for handling occlusion. Additionally, compared using RH-
D [26], OCHuman [62], CrowdPose [63], and LSP [64, 65]
datasets, where domain gap, occlusion, and complex poses
exist, our results exceed those of CLIFF [24].

4.4. Ablation Study

Loss configuration. First, Table 6 describes the loss con-
figuration. In order to select the optimal loss, we conducted
an experiment by adopting various losses in the Feat1,2,3,4

of the teacher and student encoders. Various losses com-
monly used in feature distillation were experimented, Log-
Softmax-L1 yielding the superior accuracy. The channel-
wise Softmax was performed to consider the individual
channel effects in all feature maps. However, there exists a
difference in the structural information between the Canny
edge [32] and the SMPL edge map, providing an input to the
feature encoder and posing a challenge for distillation. To
neglect this difference between edge map inputs and thereby
boost feature distillation performance, we applied various
combinations of feature maps.
Optimal feature branch selection. Table 7 reveals the re-
sult of feature map combination. By removing the feature
maps individually, the performance improved. Specifically,
removing the initial feature maps strengthened performance
due to severe structural information differences. When

feature map MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)
1st, 2nd, 3rd, 4th 78.26 49.85 94.22
2nd, 3rd, 4th 77.88 49.15 93.43
3rd,4th 77.37 49.39 92.6

4th 77.92 49.5 93.77

Table 7. Results on various combinations of feature map usage.

simple edge MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)
Canny edge 5 × 5 [32] 77.37(-1.8) 49.39(-0.5) 92.60(-2.2)

HED [35] 77.83(-1.7) 49.36(-0.6) 93.24(-1.9)
RCF [34] 77.72(-2.1) 49.07(-0.9) 93.14(-2.5)

PiDiNet [36] 77.80(-2.0) 49.05(-0.8) 93.45(-2.3)
SMPL edge estimator 78.87(-2.3) 49.47(-1.2) 94.56(-2.4)

Table 8. Various edge detector results for feature distillation.

Feat4 is used, the spatial area containing the structural map
features is too small, so the accuracy responds improperly.
Therefore, we connected Feat3,4student and Feat3,4teacher and
used Log-Softmax-L1 loss when performing feature dis-
tillation. Experiments were conducted with various edge
detectors as captured in Table 8 to identify the edge with
the optimal feature distillation.
Optimal edge selection for feature distillation. In Ta-
ble 8, all performance has improved using simple edge
[35, 34, 36] or SMPL edge estimators, while Canny [32]
with 5 × 5 dilation exhibited the greatest performance. To
this end, we demonstrated that feature distillation can im-
prove performance for all edge detectors.

5. Conclusion
We presented a novel SMPL edge feature distillation

(SEFD) method to solve complex pose and occlusion prob-
lems. This method effectively solved the existing occlu-
sion problem and reduced the structural difference between
SMPL and Canny edges [32]. Thus, complex pose and
occlusion problems have been solved, demonstrated both
qualitatively and quantitatively. Our proposed method is
simple yet effective, outperforming existing state-of-the-art
methods and offering wide application in the field of human
mesh and pose estimation.
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